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Dynamics and roughness of reaction fronts in heterogeneous solid-state chemical reactions

V. I. Yudson, M. Schulz, and S. Stepanow
Fachbereich Physik, Universita¨t Halle, D-06099 Halle Saale, Germany

and Institute of Spectroscopy, Russian Academy of Science, Troitzk 142092, Moscow Region, Russia
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A mesoscopic model to describe the reaction fronts in solid-state reactions is proposed. The model predicts
the existence of the linear regime (s;t, s is the average thickness of the reaction layer,t is the time! and the
parabolic regime (s;At). The roughness of the reaction front is also considered.@S1063-651X~98!04805-3#

PACS number~s!: 82.20.2w, 68.35.2p, 82.65.2i
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I. INTRODUCTION

In heterogeneous solid-state reactions the reaction p
ucts separate spatially the initial materials. For a continua
of the reaction process the reacting species have to dif
across the reaction product. Therefore, these interface r
tions are controlled by both the elementary reaction ra
between two neighboring atoms~or molecules! of the react-
ing species and the diffusion constants for the mot
through the reaction product. At the initial stage of the int
face reactions the film of reaction products between the b
of reacting species is thin. Therefore, the transport of re
ing species through the dead zone of reaction product
sufficiently fast and the rates of the chemical processes a
interfaces control the reaction velocities and therefore
growth of the product phase@1#. Usually the interfacial reac
tions are not time dependent@2–5#, which results in a linear
reaction rate law in the regime controlled by interfacial
actions. On the other hand, the diffusion processes bec
relevant with increasing thickness of the reaction prod
layer. The diffusion determines the reaction rate for a su
ciently large size of the product layer. Consequently,
thickness of this layer follows a parabolic rate law in t
long time regime of heterogeneous solid-state reactions@6#.

Two general principles acting at the reaction front of
solid-state reaction have to be considered:~i! the minimiza-
tion of the interfacial energy, which is the energy of t
atomic arrangement along the interface;~ii ! the minimization
of the activation energy for the interface movement, for e
ample, the movement of the interfacial dislocations. B
demands cannot be fulfilled simultaneously~see@7#!. At the
initial stage of the reaction, where the interfacial proces
determine the reaction rate, the activation energy for the
terface motion is minimized by the reaction front assum
an appropriate structure, even if the latter does not involv
minimum of the interfacial energy. This corresponds to
well-known fact that the interface is not in the chemic
equilibrium during the reaction controlled regime@6#. With
the further advancing of the reaction front, the diffusion co
trolled regime may become appropriate, so that the reac
front due to a decrease of the reaction velocity at the in
faces may rearrange to adapt a structure according to
minimum of interfacial energy. This behavior corresponds
the interface being in chemical equilibrium during th
diffusion-controlled regime. Besides the above minimal pr
ciples, the fluctuations of the diffusing reagent species m
571063-651X/98/57~5!/5053~7!/$15.00
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influence the morphology of the reaction front. From t
general point of view one expects that the fluctuations fa
an increase of the roughness of the initially smooth int
faces.

There exists a versatile spectrum of underlying proces
and chemical reaction mechanisms, e.g., the detachme
atoms~ions, molecules! from the front of the reactants@8#,
the diffusion of the reactant particles through the prod
layer @9#, the real chemical reaction at the interfaces betwe
reacting species and reaction product, the relaxation of
final molecules in the corresponding lattice of the react
products @9#, the nucleation rate of possible interfaci
growth ledges@10#, and motion of possible dislocation mis
fits @7#. For a more detailed discussion we analyze the re
tion processes of a spinel formation; see Fig. 1. Such a r
tion can be described by an overall reaction equation, e.

MgO1Al2O3→MgAl2O4 .

There exists a large class of spinel reactions containing v
ous metal atoms@11–13#. A general property of all these
reactions is the relatively high mobility of the cations and t
extremely low mobility of the~oxygen! anions. In other
words, the anions form an immobile sublattice, which is a
proximately stable during the reaction processes. The in
reactants and the reaction products have, of course, diffe
lattice constants. This misfit is equalized by various latt
dislocations. Only some few materials show a very low m
fit, e.g., the interfaces TiMg2O4/MgO and MgFe2O4 /MgO,
respectively@14# . Distribution, mobility, and possible trans
formations of these dislocations determine also the evolu
of the interfaces. However, it can be assumed that the c
tributions of these dislocations to the roughness of the in
face are sufficiently small for the short time regime~increas-

FIG. 1. Reaction fronts and processes at the interfaces for
chemical reaction processA1B→C.
5053 © 1998 The American Physical Society
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5054 57V. I. YUDSON, M. SCHULZ, AND S. STEPANOW
ing roughness!. On the other hand, the interfaces beco
smooth at very long times~corresponding to a large thick
ness of the reaction product zone! and only the dislocations
remain effective. Thus, the final interface structure is mai
determined by the equilibrium distribution of the disloc
tions.

The formation and evolution of misfits is a result of th
anion sublattice deformation during the spinel reaction.
other elementary steps are mainly determined by prope
of the cations and the corresponding cation sublattice.
consider the reaction of the general type

A1B→C.

The solid-state reaction is separated into the following ch
acteristic steps, see also Fig. 1.

~1! Processes at the interfaceA/C: ~i! detachment ofA
particles from theA surface with the rateaA ; ~ii ! integration
of returning A particles into phaseA with the rate
qAnA(A/C) @nA(A/C) is the concentration ofA particles in
the reaction product zone at the interfaceA/C#. ~iii ! Reaction
of B particles with particles of the phaseA with the rate
gBnB(A/C). ~iv! Relaxation of the rough interfaceA/C into
an energetically favorable configuration.

~2! Processes in the reaction product zone: diffusion oA
and B particles with diffusion coefficientsDA and DB , re-
spectively.

~3! Processes at the interfaceC/B: ~i! detachment ofB
particles from theB surface with the rateaB ; ~ii ! integration
of returning B particles into phaseB with the rate
qBnB(C/B) @nB(C/B) is the concentration ofB particles in
the reaction product zone at the interfaceC/B#; ~iii ! reaction
of A particles with particles of the phaseB with the rate
gAnA(C/B); ~iv! relaxation of the rough interfaceC/B into
an energetically favorable configuration.

The aim of the present paper is to give a theoretical
scription of these processes on a mesoscopic level. Secti
introduces the model. The time evolution of the thickness
the reaction product layer is considered in the first part
Sec. III. The roughness and other characteristic quantitie
the interface structure are considered in the second pa
Sec. III. Section IV contains the conclusion.

II. THE MODEL

As mentioned above, we consider the chemical reac
A1B→C. The materialsA and B occupy the regions2`
,z,zA(r,t) and zB(r,t),z,`, respectively. The range
between the two interfaceszA(r,t),z,zB(r,t) is filled with
the reaction productC. The reagentsA andB diffuse through
the ‘‘neutral’’ region C with the diffusion coefficientsDA
andDB , respectively. The concentrationsnA andnB of dif-
fusing reagents within theC layer are assumed to be ve
small as compared to their concentrationsNA andNB in the
bulk A andB materials. For not too large thickness of theC
layer, this allows us to consider the chemical reaction o
on the interfaces, neglecting the reaction processes in
bulk of theC layer.

In analogy with the interface growth models@15# we as-
sume that in the continuous limit the interface evolution
sufficiently described by the following linear equation:
e
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NA~B!

]

]t
zA~B!~r,t !52LA~B!~¹!zA~B!~r,t !1 j A~B!~ t !

1hA~B!~r,t !, ~1!

where the first~‘‘dynamical’’ ! term in Eq. ~1! describes
smoothening of the interface roughness, the second term
responds to an averaged escape ofA(B) reagents from the
interfaces to theC layer caused by both adsorption
desorption and reaction processes, and the last~‘‘stochas-
tic’’ ! part describes fluctuations in these processes, wh
lead to the interface roughness. It is assumed that the
chastic termhA(B)(r,t) corresponds to the Gaussian proce
of zero average value (^hA(B)(r,t)&50 and the correlation
function

^h I~r,t !hJ~r8,t8!&5D IJD I~ t !D~r2r8!D~ t2t8!, ~2!

whereI ,J5$A,B%, and the functionsDA(B)(t) as well as the
operatorLA(B)(¹) and the currentj A(B) in Eq. ~1! will be
specified below.

First, we consider the dynamics of an averaged interfa
motion. The averaged positions of the interfaces are de
mined aszA(B)(t)5^zA(B)(r,t)& and obey the dynamica
equation, which stems from Eq.~1! after the averaging ove
the random noise:

NA~B!

d

dt
zA~B!~ t !5 j A~B!~ t !. ~3!

The ratesj A(B)(t) at the two boundaries are given by th
following expression:

j A~B!~ t !57qA~B!@nA~B!
0 2nA~B!~zA~B!~ t !,t !#7gB~A!nB~A!

3@zA~B!~ t !,t#. ~4!

Here nA(B)(z,t) is the averaged concentration of theA(B)
reagents in the layerC. The first term in Eq.~4! describes the
escape of the reagentA(B) from the bulkA(B) material to
the layerC and the return process, i.e.,qA(B)nA(B)

0 5aA(B)

and qA(B)nA(B)@zA(B)(t),t#, respectively; nA(B)
0

5aA(B) /qA(B) corresponds to the equilibrium~or saturation!
concentration of theA(B) ‘‘vapor’’ on the ‘‘solid-gas’’ in-
terfacesA(B)/C. The second term in Eq.~4! describes eras
ing of theA(B) surface due to the chemical reaction with t
diffusing reagentB(A).

As mentioned above, we assume thatnA(B)
0 ~and therefore

the ratio aA(B) /qA(B)) are very small as compared to th
concentrationsNA andNB in the bulkA andB materials

nA~B!
0 !NA~B! , ~5!

that is why we consider the reactions only on the interfac
Propagation of the reagentsA and B through the reaction
product regionC is described by the diffusion equations

]

]t
@nA~B!~z,t !#5DA~B!

]2

]z2
nA~B!~z,t !, ~6!

with the following boundary conditions on the moving inte
faces:
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57 5055DYNAMICS AND ROUGHNESS OF REACTION FRONTS . . .
DA~B!

]

]z
nA~B!~z,t !uz5zA~B!~ t !57qA~B!@nA~B!

0 2nA~B!

3~zA~B!~ t !,t !#; ~7!

DA~B!

]

]z
nA~B!~z,t !uz5zB~A!~ t !57gA~B!nA~B!~zB~A!~ t !,t !.

~8!

These conditions describe the dependence of the diffu
reagent density on the evaporation-desorption processe
the ‘‘own’’ and on the chemical reaction on the ‘‘foreign
interfaces.

The system of equations~3!, ~4!, and~6!–~8! determines
completely the dynamics of the averaged interface motio

III. INVESTIGATION OF THE MODEL

A. Dynamics of the interfaces motion

The system of dynamical equations is still too comp
cated for a straightforward solution. To proceed, we will g
rid of the above condition~5!. As will be shown below, this
condition results in relatively small shifts of the interfac
during the typical diffusion timetD5(zB2zA)2/D. It allows
one to consider the density distribution of the reagents in
layer C as the stationary solution to the diffusion equatio
~6! with the boundary conditions~7!, ~8!, which contain the
time variablet only as a parameter.

These solutions are easily obtained in the following for

nA~B!~z,t !57
qA~B!nA~B!

0 @z2zB~A!7DA~B! /gA~B!#

DA~B!~11qA~B! /gA~B!!1qA~B!s~ t !
, ~9!

where

s~ t !5zB~ t !2zA~ t ! ~10!

is the averaged distance between the interfaces. With us
Eqs. ~3! and ~6! we obtain the equation for the interface
motion:

d

dt
zA~B!~ t !57

N

NA~B!

ds~ t !

dt
, ~11!

and therefore

ds~ t !

dt
5

1

N (
I 5A,B

DIqInI
0

DI~11qI /g I !1qIs~ t !
, ~12!

whereN5NANB /(NA1NB). The solution to Eq.~12! with
the initial conditions(0)50 obeys the following transcen
dental equation:

1

2
s21~jAmA1jBmB!s2jAjB~mA2mB!2

3 lnS 11
s

jAmB1jBmA
D

5
DAnA

01DBnB
0

N
t, ~13!
ng
on

.

t

e
s

:

of

where some shortened notations have been introduced:

jA~B!5
DA~B!nA~B!

0

DAnA
01DBnB

0
, ~14!

mA~B!5DA~B!S 1

qA~B!
1

1

gA~B!
D . ~15!

As follows from Eq.~13!, s(t) grows linearly at smallt:

s~ t !'FqAnA
0gA

qA1gA
1

qBnB
0gB

qB1gB
G t

N
~16!

while at larget this growth slows down:

s~ t !'F2
DAnA

01DBnB
0

N
tG1/2

. ~17!

Thus, the short time behavior is mainly determined by
velocity of the chemical reactions at the interfaces~defined
by the reaction coefficientgA(B)) while the diffusion effects
are unimportant~reaction controlled regime!. On the other
hand, the long time behavior is determined by the diffus
effects, whereas the reaction constants have no notice
influence~diffusion controlled regime!. The crossover time
tc is determined by comparison of Eqs.~16! and ~17!:

tc;2N~DAnA
01DBnB

0 !F qAnA
0

11qA /gA
1

qBnB
0

11qB /gB
G22

.

~18!

For comparable parameters forA andB reagents, we would
obtain a simplified estimate fortc :

tc;DS 1

q
1

1

g D N

n0
. ~19!

The obtained results determine completely the dynamic e
lution of the interfaces. In conclusion of this section we w
demonstrate the validity of the quasistationary approxim
tion used in solving the dynamical equations~3!, ~4!, and
~6!–~8!. The criterion for the validity of this approximation
is

tD

ds~ t !

dt
!s~ t !, ~20!

where tD5min$s2(t)/DA ,s2(t)/DB% is the characteristic time
of the relevant reagent transport from one of the interface
the other one. With use of Eqs.~16!, ~17!, and ~18!, the
inequality ~20! reduces to

DAnA
01DBnB

0

max$DA ,DB%N
minH t

tc
,1J !1, ~21!

whose validity is guaranteed by the inequality~5!.

B. Roughness of the interfaces

The above analysis of the dynamical growth of the int
face separation length was based on a quite simple ma
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scopic description, which is not too sensitive with respec
the microscopic details. On the contrary, the interface rou
ness growth is caused by microscopic fluctuations
adsorption-desorption and reaction processes, and its
scription, in general, depends on the concrete microsc
model. Within the framework of the effective phenomen
logical description Eq.~1!, the choice of the model corre
sponds to the choice of the operatorLA(B)(¹) and the func-
tions DA(B)(t) in Eq. ~2!.

The interface roughness may be characterized by
mean-square value

RA~B!~ t !5^hA~B!
2 ~r,t !&, ~22!

where

hA~B!~r,t !5zA~B!~r,t !2zA~B!~ t !. ~23!

The quantityhA(B)(r,t) obeys the equation

NA~B!

]

]t
hA~B!~r,t !52LA~B!~¹!hA~B!~r,t !1hA~B!~r,t !.

~24!

Using the Fourier representation

hA~B!~r,t !5E d2k/~2p!2hA~B!~k,t !exp~ ikr! ~25!

@and similarly forhA(B)(r,t)#, we obtain from Eq.~23!

hA~B!~k,t !5
1

NA~B!
E

0

t

dt8 exp@2LA~B!~ ik !

3~ t2t8!/NA~B!#hA~B!~k,t8!. ~26!

Finally, we get a general expression for the roughness
rameterRA(B)(t) Eq. ~22!:

RA~B!~ t !5
1

NA~B!
2 E

0

t

dt8E d2k/~2p!2 exp@22LA~B!~ ik !

3~ t2t8!/NA~B!#DA~B!~ t8!. ~27!

The operatorLA(B)(¹) describes the smoothening of the i
terface due to the change of the cation positions along
interface and due to the reorientation of the anion sublat
in the case of a nonvanishing lattice misfit. In principle, th
operator corresponds to the linear response to an avai
disturbance of a smooth interface. Such a representatio
always possible at a mesoscopical level under the cons
ation that only small local interface gradients are observa
This condition is almost fulfilled for real experimental sit
ations. Generally,LA(B)( ik) depends on the orientation wit
respect to the underlying lattice. We restrict our investigat
to the isotropic case, but a generalization to the anisotro
case is always possible. Furthermore, the influence of di
cations onLA(B)(¹) is neglected. But it should be remarke
that for vanishing chemical reactions and particle excha
@hA(B)(k,t)50# the number of particles is conserved, i.
*hA(B)(r,t)d2r50. Thus, one obtains immediate
limk→0LA(B)( ik)50. For a further discussion we restrict o
investigations to the isotropic power-law functionLA(B)( ik)
o
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LA~B!~ ik !5 f sk
s ~s.0!. ~28!

Thus, we may rescale the variable

k→k@2 f s~ t2t8!/NA~B!#
21/s ~29!

and obtain a simplified expression forRA(B)(t):

RA~B!~ t !5
G~2/s!

2ps~2 f s!
2/sNA~B!

~222/s!E0

t

dt8
DA~B!~ t8!

~ t2t8!2/s
. ~30!

Now we should specify the correlation functionDA(B)(t)
of the stochastic noise variablehA(B)(r,t). As mentioned
above this noise stems from the fluctuations of a
sorption-desorption and reaction processes. The ave
rates of these three processes on the interf
A(B) are given byqA(B)nA(B)@zA(B)(t),t#, qA(B)nA(B)

0 , and
gB(A)nB(A)@zA(B)(t),t#, respectively; see Eq.~4!. We assume
that these processes possess the Poisson statistics, w
originates from the discrete nature of the reagents~shot
noise!. Below we consider the two noise models:

~1! The model where there is no correlation between
above three processes. In this model, the correlation func
DA(B)(t) is given by

DA~B!~ t !5qA~B!@nA~B!~zA~B!~ t !,t !1nA~B!
0 #

1gB~A!nB~A!„zA~B!~ t !,t…. ~31!

~2! The model where the adsorption and desorption
well correlated so that they do not contribute to the interfa
roughness. In this model, the correlation functionDA(B)(t) is
determined only by fluctuations of the reaction process:

DA~B!~ t !5gB~A!nB~A!„zA~B!~ t !,t…. ~32!

1. Model 1

Consider the time dependence ofDA(B)(t) in more detail.
At short times (t!tc) we find

DA~B!~ t !'qA~B!nA~B!
0 112qA~B! /gA~B!

11qA~B! /gA~B!
1

qB~A!nB~A!
0

11qB~A! /gB~A!
.

~33!

At long times (tc!t)

DA~B!~ t !'2qA~B!nA~B!
0 . ~34!

Thus, in the model 1 there is no essential time dependenc
DA(B)(t) in both time limits.

In further analysis we sets54 in Eq. ~28!, as it has been
accepted for the MBE growth process~for explanation see,
for example,@16#!. In this case, the time integral in Eq.~30!
may be written in an approximate form:

E
0

t

dt8
DA~B!~ t8!

~ t2t8!1/2
'2DA~B!~ t !At, ~35!

where the left-hand side approaches the exact value of
integral in both time limits. We arrive at the following ex
pression for the roughness dispersion~for s54):
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RA~B!~ t !5
G~1/2!

4p~2 f 4!1/2NA~B!
~3/2!

DA~B!~ t !At. ~36!

In this model the roughness dispersion grows likeAt.
Note briefly that for the model withs52 in Eq. ~28! the

above expression~36! would be replaced by

RA~B!~ t !5
G~1/2!

4p f 2NA~B!
DA~B!~ t !ln~ t/t!, ~37!

where the microscopic cutoff timet has been introduced t
eliminate the singularity of the integral kernel 1/(t2t8) at t
5t8. Note that this cutoff is a natural quantity that descen
from the limited number ofk vectors of the first Brillouin
zone.

2. Model 2

According to Eqs.~32! and ~9!, time dependence of th
correlation functionDA(B)(t),

DA~B!~ t !5
DB~A!qB~A!nB~A!

0

DB~A!~11qB~A! /gB~A!!1qB~A!s~ t !
, ~38!

is governed by the functions(t). At short times (t!tc) we
find

DA~B!~ t !'
qB~A!nB~A!

0

11qB~A! /gB~A!
, ~39!

while at long times (tc!t)

DA~B!~ t !'
DB~A!nB~A!

0

@2~DAnA
01DBnB

0 !/N#1/2

1

At
. ~40!

There is a remarkable difference in the long-time behavio
the noise correlation function for the two models, Eqs.~34!
and ~40!, respectively. The long time decay Eq.~40! results
in the finite asymptotic value of the roughness dispersi
For s54 we find that the time integral in Eq.~30! is given by
Eq. ~35! at t,tc , while at long timestc,t, its value is

E
0

t

dt8
DA~B!~ t8!

~ t2t8!1/2
'

pDB~A!nB~A!
0

@2~DAnA
01DBnB

0 !/N#1/2
. ~41!

Thus, for the second model, the initial growth (;At) of the
interface roughness Eq.~36! saturates at longer times (tc
,t) by the value
s

f

.

RA~B!~ t !5
G~1/2!

8p~2 f 4!1/2NA~B!
~3/2!

pDB~A!nB~A!
0

@2~DAnA
01DBnB

0 !/N#1/2
.

~42!

Note that for the model 2 with the dynamic exponents
52 instead ofs54, we would have a similar saturation o
the initial roughness growth Eq.~37! by the value

RA~B!~ t !;
1

4p f 2NA~B!
DA~B!~ tc!ln~ tc /t!. ~43!

In the light of a large amount of work that has been do
on kinetic roughening showing the importance of nonline
and nonequilibrium terms~for references see@16#–@18#! a
relevant question is how the nonlinearities modify the resu
obtained above. In the case of a growth model with cons
vation, a nonlinear term associated with the lateral grow
can be added on the right-hand side of Eq.~1! in the form
l¹2@¹zA(B)(r,t)#2. It is easy to see that such a nonline
term does not change the results obtained in Sec. III A on
time dependence of the average thickness of the reac
product layer. On the other hand, the nonlinear term w
change the results on the roughness obtained in Sec. III B
analogy to growth models with conservation@16#, we expect
that the nonlinear term will decrease the roughness.
main purpose of this article is the description of the tim
dependence of the average thickness of the reaction pro
layer, where a lot of experimental results are available.
far, there are no clear experimental evidences whether
nonlinear terms are important for the growth of reacti
fronts. A detailed theoretical study of the effects of nonli
earities on the growth of the reaction front is left to a futu
work.

C. Transversal fluctuations

The roughness shows also a short time regime and a
time regime. But it should be remarked thatRA(B)(t) is a
global quantity. Especially the long time behavior is main
determined by large scales. Note that one obtains the s
roughness for interface fluctuations of the same order
magnitude independent from the characteristic length s
of the fluctuations, i.e., fluctuations on a microscopical
mesoscopical length scale leads to the same roughnessRA(B)
as fluctuations on a large macroscopical scale. Therefo
discussion of the corresponding differential coefficients
helpful. We obtain as a generalization of Eq.~27!:
^~¹mhA~B!!
2&5

1

NA~B!
2 E

0

t

dt8E k2md2k/~2p!2 exp@22LA~B!~ ik !~ t2t8!/NA~B!#DA~B!~ t8! ~44!

or

^~¹mhA~B!!
2&5

G~~2m12!/s!

2ps~2 f s!
~2m12!/sNA~B!

~22~2m12!/s!E0

t

dt8
DA~B!~ t8!

~ t2t8!~2m12!/s
.
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The long time behavior of the first two differential coefficients of sufficiently realistic MBE case (s54) becomes now for
model 1

^~¹hA~B!!
2&'

DA~B!~ t !

16p f 4NA~B!
ln~ t/t! and ^~DhA~B!!

2&'
G~3/2!DA~B!~ t8!

4p~2 f 4!3/2NA~B!
~1/2!

1

At
,

whereas model 2 is characterized by the mean square interface gradient

^~¹hA~B!!
2&'

1

16p f 4NA~B!

DB~A!nB~A!
0

@2~DAnA
01DBnB

0 !/N#1/2

1

At
ln~ t/t!

and the mean square curvature
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It is remarkable that both the gradient fluctuations and
curvature fluctuations of model 2 decrease fort→`. Thus
the microscopical~and mesoscopical! roughness vanishe
and only the roughness at large scales remains effective
the other hand, model 1 retains a certain roughness bec
^(DhA(B))

2& converges to a finite limit and̂(¹hA(B))
2& con-

verges. However, that is not a surprising result because
though the influence of the chemical reactions on the in
face decreases with increasing time~and therefore an
increasing thickness of the product layer! but the detachmen
of the atoms of typeA(B) from the interfaceA/C(C/B) and
the returning of these atoms is always active. The last ef
is suppressed in model 2. The returning atoms have a s
ciently long time to find a energetically favorable place at
interface. Such a correlation between the detachment and
returning of particles leads to the fact that only chemi
reactions at the interface remain effective; i.e., the interf
shows an increasing smoothing at mesoscopical scales. I
interface becomes sufficiently smooth, the influence of d
locations becomes relevant. Such a regime can be expla
by a usual equilibrium dynamics of the dislocations at
analyzed interface.

IV. CONCLUSION

To conclude, we proposed a mesoscopic model, wh
describes the dynamics and the roughness of the rea
e

n
use

al-
r-

ct
fi-
e
the
l
e
he
-
ed
e

h
ion

fronts in heterogeneous solid state chemical reactions.
long time regime and the short time regime of the growi
interface can be described by a few mesoscopic parame
The relation between these parameters and microscop
quantities can be obtained by standard techniques of s
state quantum mechanics. The crossover between the
time regimes corresponds to a change from reac
controlled processes at short times to diffusion control
processes at long times. The characteristic crossover tim
defined by Eq.~18!. The averaged thickness of the reacti
product layer increases monotonously and behaves
;t at short times and;At at long times. This crossove
behavior is well known from various experiments@1,4,6,7#.
Furthermore, the influence of the regimes to the rou
ness of interfaces was also observed at least qualitati
@7,8,11#.
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